
Derivations and Stabilizing Automorphisms

Bennett Rennier
bennett@brennier.com

May 9, 2019

1 Derivations

The material for this section can be found in Hilton-Stammbach [1].

Definition 1. Let G be a group and let A be a G-module. A derivation (also known as a crossed
homomorphism) is a function d : G→ A such that

d(xy) = xd(y) + d(x)

We let Der(G,A) denote the set of all derivations and note that it forms an abelian group under
pointwise addition in the image. We also note that d(1) = 0 as

d(1) = d(1 · 1) = 1d(1) + d(1) = 2d(1).

Definition 2. An important class of derivations to look at are those of the form da(x) = xa − a
for some a ∈ A which we call principal derivations (also known as inner derivations). We see these
are indeed derivations as

da(x) + xda(y) = xa− a+ x(ya− a)

= xa− a+ xya− xa
= xya− a
= da(xy).

We let PDer(G,A) denote the set of all principal derivations and note that these form of a subgroup
of Der(G,A) as da − db = da−b.

Example 3. Now derivations are connected to semidirect products. Recall that if G is a group and
A is a G-module, then their semidirect product AoG comes equipped with maps i and p such that

0 → A
i→ AoG

p→ G → 1 is exact. We can consider i(A) as a AoG-module under the action of
conjugation. That is

(b, x) · (a, 1) · (−x−1b, x−1) = (xa, 1),

which means we can consider A as a A o G-module under the action (b, x).a = xa. Note that we
also have a projection map q : A o G → A where q(a, x) = a. This is projection is not a group
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homomorphism; however, it is a derivation as

q((a, x) · (b, y)) = q(a+ xb, xy)

= a+ xb

= q(a, x) + (a, x).b

= q(a, x) + (a, x) · q(b, y).

In fact, we have following universal property of derivations in terms of semidirect products.

Proposition 4. Suppose that G is a group and A is a G-module. If we have a group homomorphism
f : X → G and a derivation d : X → A (with A is regarded as an X-module using f), there is a
unique group homomorphism h : X → AoG such that the following diagram commutes:

G

X AoG

A

h

f

d

q

p

Conversely, every group homomorphism h : X → AoG induces a homomorphism f : X → G and
a deriviation d : X → A.

Proof. The proof is quite straightforward. We can simply define h to be h(x) = (d(x), f(x)) for all
x ∈ X. We see that such an h is a group homomorphism as

h(x)h(y) = (d(x), f(x))(d(y), f(y))

= (d(x) + d(y)f(x), f(x)f(y))

= (d(x) + xd(y), f(x)f(y))

= (d(xy), f(xy))

= h(xy).

The converse is also quite easy; we can simply take f = ph : X → G and d = qh : X → A. It is
clear that f is a homomorphism as p and h are both homomorphisms. We see that d is a derivation
as q is a derivation and so

d(xy) = q(h(xy))

= q(h(x)h(y))

= h(x) · q(h(y)) + q(h(x))

= h(x) · d(y) + d(x)

= p(h(x))d(y) + d(x)

= f(x)d(y) + d(x)

= xd(y) + d(x).

Corollary 5. We note that in particular, if we take X = G and f = 1G, we have that the set of
derivations from G to A is in one-to-one correspondence with group homomorphisms f : G→ AoG
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where pf = 1G, which are the lifts of the exact sequence 0 → A
i→ A o G

p→ G → 1. This means
that a lift ` : G→ AoG is a homomorphism if and only if `(x) = (d(x), x) for some derivation d.

We can also use derivations to describe the first cohomology group H1(G,A). To show this connec-
tion, we first prove the following:

Theorem 6. The groups Der(G,A) and HomG(IG,A) are isomorphic under the map φ : Der(G,A)→
HomG(IG,A), where φ sends a derivation d to the homomorphism φd defined by φd(y− 1) = d(y).

Proof. Let d : G → A be a derivation; we want to show that φd = φ(d) is a G-module homomor-
phism. We see this is the case as

φd(x(y − 1)) = φd((xy − 1)− (x− 1))

= d(xy)− d(x)

= d(x) + xd(y)− d(x)

= x · φd(y − 1).

To prove that this is an isomorphism, we construct an inverse. Let ψ : HomG(IG,A)→ Der(G,A)
be the map that sends a G-module homomorphism f : IG → A to the map ψf : G → A where
ψf (y) = f(y − 1). We see that ψf is a derivation as

ψf (xy) = f(xy − 1)

= f(x(y − 1) + (x− 1))

= xf(y − 1) + f(x− 1)

= xψf (y) + ψf (x).

Since we have that ψφd(y) = φd(y− 1) = d(y) and that φψf
(y− 1) = ψf (y) = f(y− 1), we see that

these maps are indeed inverses. This proves that φ is an isomorphism.

Corollary 7. There is an isomorphism

H1(G,A) ' Der(G,A)

PDer(G,A)
.

Proof. Recall that if we start with the short exact sequence 0→ IG
i→ ZG ε→ Z→ 0, we can then

apply Ext to the get the following long exact sequence:

. . . HomG(ZG,A) HomG(IG,A) H1(G,A) Ext1(ZG,A) . . .i∗

Since Ext1(ZG,A) = 0 as ZG is projective, we have that H1(G,A) ' HomG(IG,A)/ im(i∗). Fur-
thermore, we have an isomorphism between HomG(ZG,A) that sends the map φ : ZG→ A to the
element φ(1) where φ(x) = xφ(1). Thus, the image of i∗ are the maps of the form φ : IG → A
where φ(x) = xa. We see then that φ(x − 1) = (x − 1)a = xa − a, meaning the image of i∗ are
exactly the principal derivations from G to A. This proves that

H1(G,A) ' HomG(IG,A)

im(i∗)
' Der(G,A)

PDer(G,A)
.
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Now, we can also use derivations to prove some useful things about the homology and cohomology
of free groups.

Theorem 8. If F is the free group over a set S, then its augmentation ideal IF is a free F -module
over the set S − 1 = {s− 1 : x ∈ S}.

Proof. Recall that IF is generated by the set F − 1. Since F is generated by S, this means that
IF is generated by S − 1. Thus, if we have a set function f : S − 1 → M for some F -module M ,
then there’s only one possible extension to f : IF →M . By proving that we can always make such
an extension, we can conclude that IF is a free F -module over the set S − 1.

So, let M be a F -module and let f : S − 1 → M be some set function. Since F is free over the
set S, we can define a homomorphism f̃ : F → M o F , where f̃(s) = (f(s − 1), s). Since this
is a homomorphism, Corollary 5 proves that d : F → M where d(s) = f(s − 1) is a derivation.
By Theorem 6, we have that f ′ = φ(d) is a F -module homomorphism from IF to M where
f ′(s− 1) = d(s) = f(s− 1). This f ′ is the desired extension of f , concluding the proof.

Corollary 9. If F is a free group, then

Hn(F,A) = 0 = Hn(F,B)

for any F -modules A and B and for all n ≥ 2.

Proof. We recall that
Hn(F,A) = Hn(HomG(F∗, A)).

where F∗ is a projective resolution of F . Since IF and ZF are both free F -modules, we have that

· · · → 0→ 0→ IF → ZF → Z

is a free resolution of Z. As this is also a projective resolution and Fn = 0 for n ≥ 2, we see that
Hn(F,A) = 0. Similarly, Hn(F,A) = 0 for n ≥ 2.

We can find another way of representing derivations and the second cohomology group, which is
the topic of the next section.

2 Stabilizing Automorphisms

The material for this section can be found in Rotman [2]; though, most of the proofs have been
modified and simplified to fit into the framework of the previous section.

A concept that we will see is very related to derivations are stablizing automorphisms. To begin, let
G be a group and let A be a G-module so that 0→ A→ E → G→ 1 is an extension. This means
that if we choose a lift ` : G→ E, then every element of e ∈ E can be written as e = a+ `(x) for
some a ∈ A and x ∈ G.

Definition 10. Now a Stabilizing Automorphism of an extension 0
i→ A → E

p→ G → 1 is an
automorphism φ : E → E such that the following diagram commutes

0 A E G 1

0 A E G 1

i

1A

p

φ 1G

i p
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We let Stab(G,A) be the group of all stablizing automorphisms. Surprisingly, we already have a
pretty good idea about this group.

Proposition 11. Let G be a group, A be a G-module, and 0→ A→ E → G→ 1 be an extension.
Now if ` : G → E is some lifting, then φ : E → E is a stabilizing automorphism if and only if it
has the form

φ(a+ `(x)) = a+ d(x) + `(x)

where d : G→ A is a derivation. Morever, this derivation d is independent of our choice of lifting `.

Proof. Let φ : E → E be a stabilizing automorphism and ` : G → E be a lifting. Then by the
diagram in Definition 10, it must be that φ(a) = a and that pφ = p. We can use this second
condition to see that φ(`(x)) = d(x) + `(y) for some function d : G→ A. Since we have that

x = p(`(x)) = pφ(`(x)) = p(d(x) + `(y)) = y,

so it must be that x = y and that

φ(a+ `(x)) = φ(a) + φ(`(x)) = a+ d(x) + `(x).

Now before we prove that d must be a derivation, we will first prove that it is independent of our
choice of `. To do this, let `′ : G→ E be another lifting such that φ(a+ `′(x)) = a+ d′(x) + `′(x)
for some function d′. Since p`′(x) = x = p`(x), there there is some k : G → A such that `′(x) =
k(x) + `(x). We see then

d′(x) = φ(`′(x))− `′(x)

= φ(k(x) + `(x))− `′(x)

= k(x) + d(x) + `(x)− `′(x)

= d(x) + `′(x)− `′(x)

= d(x).

This proves that the function d is independent of our choice of lifting. Now we need only to show
that d is indeed a derivation. Recall that there is a factor set f : G×G → A where `(x) + `(y) =
f(x, y) + `(xy) for all x, y ∈ G. We see that

φ(`(x) + `(y)) = φ(`(x)) + φ(`(y))

= d(x) + (`(x) + d(y)− `(x)) + `(x) + `(y)

= d(x) + xd(y) + `(x) + `(y)

= d(x) + xd(y) + f(x, y) + `(xy).

However, computed another way, we also see that

φ(`(x) + `(y)) = φ(f(x, y) + `(xy))

= φ(f(x, y)) + φ(`(xy))

= f(x, y) + φ(`(xy))

= f(x, y) + d(xy) + `(xy).

Comparing these two, we obtain

d(x) + xd(y) + f(x, y) + `(xy) = f(x, y) + d(xy) + `(xy)
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If we then cancel the `(xy) on both sides, we rest of the terms all lie in the abelian group A, so we
can rearrange as we like and cancel the f(x, y) term to obtain that

d(xy) = d(x) + xd(y)

which proves that d is a derivation.

Now conversely, let φ be a map of the form φ(a + `(x)) = a + d(x) + `(x) where d : G → A is a
derivation. We see that φ(a, 0) = a and that p(φ(a+`(x))) = p(a+d(x)+`(x)) = `(x) = p(a+`(x)).
Thus, the following diagram commutes

0 A E G 1

0 A E G 1

i

1A

p

φ 1G

i p

If we let f : G×G→ A be the factor set such that `(x) + `(y) = f(x, y) + `(xy), we can see that
φ is a homomorphism as

φ(a+ `(x) + b+ `(y)) = φ(a+ b+ f(x, y) + `(xy))

= (a+ b+ f(x, y)) + d(xy) + `(xy)

= a+ b+ (d(x) + xd(y)) + f(x, y) + `(xy)

= a+ b+ d(x) + (`(x) + d(y)− `(x)) + `(x) + `(y)

= (a+ d(x) + `(x)) + (b+ d(y) + `(y))

= φ(a+ `(x)) + φ(b+ `(y))

This means we can apply the Five Lemma to deduce that φ is an isomorphism, and thus φ is a
stablizing automorphism.

We also see that not only are derivations and stabilizing automorphisms in a 1-1 correspondence,
they are also isomorphic as groups, which we will now prove.

Theorem 12. The group of stabilizing automorphisms Stab(G,A) is isomorphic to the group of
derivations Der(G,A).

Proof. According to the previous proposition, if φ : E → E is a stabilizing automorphism, then
φ(a+`(x)) = a+d(x)+`(x) where d is a derivation and ` is any lifting. So, we let σ : Stab(G,A)→
Der(G,A) be the map that sends a stabilizing automorphism to the derivation associated with it
in this way. We see that if σ(φ) = d1 and σ(ψ) = d2, then

(ψ ◦ φ)(a+ `(x)) = ψ(φ(a+ `(x)))

= ψ(a+ d1(x) + `(x))

= ψ((a+ d1(x)) + `(x))

= (a+ d1(x)) + d2(x) + `(x)

= a+ (d1(x) + d2(x)) + `(x).

This shows that σ(ψ◦φ) = d1+d2, proving that σ is a homomorphism. Since the previous proposition
stated that this is a 1-1 correspondence, we have that σ is an isomorphism as desired.
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Remark. Surprisingly, this proves that even though the operation of the group Stab(G,A) is
function composition, it’s actually an abelian group as Der(G,A) is abelian. Moreover, this also
implies that Stab(G,A) does not depend on the extension E at all.

To continue the analogy with derivations, we’ll show that principal derivations correspond with a
nice subgroup of stablizing automorphism.

Definition 13. An inner stablizing automorphism φ : G → E is a stabilizing automorphism such
that for some b ∈ A, φ(a+ `(x)) = −b+ a+ `(x) + b. We denote the subgroup of inner stabilizing
automorphisms as InnStab(G,A).

Remark. As a correction to a subtle mistake in Rotman, it should be noted that the group of
inner stabilizing automorphisms is not the same as the group Stab(G,A)∩ Inn(E). Only stabilizing
automorphisms that act by conjugation with an element of A are considered inner stabilizing
automorphisms. In fact, we will provide an example to show that it is possible that InnStab(G,A)
is a proper subgroup of Stab(G,A) ∩ Inn(E). Consider the extension

0→ Z(Q8)
ι→ Q8

π→ G→ 1

where Q8 is the quaternion group of order 8, Z(Q8) is the center of Q8 (i.e. Z(Q8) = {−1, 1}), and
G = Q8/Z(Q8). Let φ : Q8 → Q8 be defined as conjugation by i, that is φ(x) = ix(−i). Since φ
is the is the identity on Z(Q8) and φ(x) = ix(−i) ∈ {x,−x}, we see that the following diagram
commutes

0 Z(Q8) Q8 G 1

0 Z(Q8) Q8 G 1

ι

1Z(Q8)

π

φ 1G

ι π

This proves that φ ∈ Stab(G,Z(Q8)) ∩ Inn(Q8). However, conjugation by an element of Z(Q8) is
trivial since it is the center of Q8. This means that InnStab(G,Z(Q8)) = {1Q8}. Since φ is not the
identity map, we have that InnStab(G,Z(Q8)) ( Stab(G,Z(Q8)) ∩ Inn(Q8).

Proposition 14. Let 0→ A→ E → G→ 1 be an extension and let ` : G→ E be a lifting. Then
φ : E → E is an inner stablizing automorphism if and only if it has the form

φ(a+ `(x)) = a+ db(x) + `(x)

where db is a principal derivation.

Proof. If φ : E → E has the form φ(a + `(x)) = a + db(x) + `(x) for some principal derivation db,
then φ we know from Proposition 11 that φ is a stabilizing automorphism. We also see that

φ(a+ `(x)) = a+ db(x) + `(x)

= a+ (xb− b) + `(x)

= −b+ a+ xb+ `(x)

= −b+ a+ (`(x) + b− `(x)) + `(x)

= −b+ a+ `(x) + b

which proves that φ acts by conjugation, meaning that it is an inner stabilizing automorphism.

Conversely, suppose that φ is an inner stabilizing automorphism. Since φ is a stabilizing au-
tomorphism, we know it has the form φ(a + `(x)) = a + d(x) + `(x) for some derivation d.
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Additionally, since φ is an inner automorphism, we know that for some b ∈ A we have that
φ(a+ `(x)) = −b+ (a+ `(x)) + b. We see that

φ(a+ `(x)) = −b+ a+ `(x) + b

= −b+ a+ `(x) + b− `(x) + `(x)

= −b+ a+ xb+ `(x)

= a+ (xb− b) + `(x)

= a+ db(x) + `(x),

which completes the proof.

Corollary 15. Since Theorem 12 and Proposition 14 state that Stab(G,A) ' Der(G,A) and
InnStab(G,A) ' PDer(G,A) respectively, we can use Corollary 7 to reinterpret the first cohomology
group as

H1(G,A) ' Stab(G,A)

InnStab(G,A)
.

Theorem 16. Let 0→ A→ E → G→ 1 be a split extension and let C and C ′ both be complements
of A in E. Then if H1(G,A) = {0}, then C and C ′ are conjugate subgroups.

Proof. As E = A o G, we have liftings ` : G → E and `′ : G → E which have images C
and C ′ respectively. By the Corollary 5, we have that `(x) = (d(x), x) and `′(x) = (d′(x), x)
where d, d′ : G → A are derivations. This means that h(x) = `(x) − `′(x) = (d(x) − d′(x), 0) is
a derivation. Since H1(G,A) = {0}, it must be that Der(G,A) = PDer(G,A). Thus, h(x) is a
principal derivation, that is, h(x) = xa− a for some a ∈ A. This shows that

`(x) = h(x) + `′(x)

= (xa− a) + `′(x)

= −a+ `′(x) + a− `′(x) + `′(x)

= −a+ `′(x) + a.

This proves that im(`) = C and im(`′) = C ′ are conjugate subgroups.
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